TRIGONOMETRIC IDENTITIES
- \((\sec A – \tan A)^2 = \dfrac{1 – \sin A}{1 + \sin A}\)
- \(\dfrac{1 – \cos A}{1 + \cos A} = (\cot A – \csc A)^2\)
- \(\dfrac{1}{\sec A – 1} + \dfrac{1}{\sec A + 1} = 2 \csc A \cot A\)
- \(\dfrac{\cos A}{1 – \tan A} + \dfrac{\sin A}{1 – \cot A} = \sin A + \cos A\)
- \(\dfrac{\csc A}{\csc A – 1} + \dfrac{\csc A}{\csc A + 1} = 2 \sec^2 A\)
- \(\dfrac{\tan^2 A}{1 + \tan^2 A} + \dfrac{\cot^2 A}{1 + \cot^2 A} = 1\)
- \(\dfrac{\cot A – \cos A}{\cot A + \cos A} = \dfrac{\csc A – 1}{\csc A + 1}\)
[NCERT, CBSE 2008] - \(\dfrac{1 + \cos \theta – \sin^2 \theta}{\sin \theta (1 + \cos \theta)} = \cot \theta\)
-
(i) \(\dfrac{1 + \cos \theta + \sin \theta}{1 + \cos \theta – \sin \theta} = \dfrac{1 + \sin \theta}{\cos \theta}\)
(ii) \(\dfrac{\sin \theta – \cos \theta + 1}{\sin \theta + \cos \theta – 1} = \sec \theta – \tan \theta\)
[CBSE 2001, NCERT]
(iii) \(\dfrac{\cos \theta – \sin \theta + 1}{\cos \theta + \sin \theta – 1} = \csc \theta + \cot \theta\)
(iv) \((\sin \theta + \cos \theta)(\tan \theta + \cot \theta) = \sec \theta + \csc \theta\)
[NCERT EXEMPLAR] - \(\dfrac{1}{\sec A + \tan A} – \dfrac{1}{\cos A} = \dfrac{1}{\cos A} – \dfrac{1}{\sec A – \tan A}\)
[CBSE 2005] - \(\tan^2 A + \cot^2 A = \sec^2 A \csc^2 A – 2\)
- \(\dfrac{\tan A}{1 + \sec A} – \dfrac{\tan A}{1 – \sec A} = 2 \csc A\)
[NCERT EXEMPLAR] - \(1 + \dfrac{\cot^2 \theta}{1 + \csc \theta} = \csc \theta\)
- \(\dfrac{\cos \theta}{\csc \theta + 1} + \dfrac{\cos \theta}{\csc \theta – 1} = 2 \tan \theta\)
[NCERT EXEMPLAR] - \((1 + \tan^2 A) + \left( \dfrac{1 + 1}{1 + \tan^2 A} \right) = \dfrac{1}{\sin^2 A – \sin^4 A}\)
[CBSE 2006C] - \(\sin^2 A \cos^2 B – \cos^2 A \sin^2 B = \sin^2 A – \sin^2 B\)
-
(i) \(\dfrac{\cot A + \tan B}{\cot B + \tan A} = \cot A \tan B\)
(ii) \(\dfrac{\tan A + \tan B}{\cot A + \cot B} = \tan A \tan B\) - \(\cot^2 A \csc^2 B – \cot^2 B \csc^2 A = \cot^2 A – \cot^2 B\)
- \(\tan^2 A \sec^2 B – \sec^2 A \tan^2 B = \tan^2 A – \tan^2 B\)
LEVEL – 2
-
If \(x = a \sec \theta + b \tan \theta\) and \(y = a \tan \theta + b \sec \theta\), prove that
\[x^2 – y^2 = a^2 – b^2\]
[CBSE 2001, 2002C]

Thank you sir so much
nice questions
Thank you sir!
thank you sir